# Achieving Reliability Goals Using Less Human Resources

David Worledge
Asset Performance Technologies, Inc.
Corrales, New Mexico

3rd Annual SMRP Houston Chapter Maintenance & Reliability Symposium August 27<sup>th</sup>, 2009



## Scope is Focused on PM Improvement

- Once equipment is installed in a plant and is operating, a good PM program is at the heart of ensuring acceptable equipment reliability at a reasonable cost
- ➤ The barriers to improving PM are both technical and logistical, and these two requirements act against each other to raise program development costs
- ➤ A significant barrier holding back progress is the need to assign whole teams of vital plant personnel to such work for extended periods
- This paper shows how this effort can be greatly reduced



## A Traditional RCM Team is Full Time

#### > Team Composition

- Operator
- Process engineer or system engineer
- Machinery specialists (electrical, mechanical)
- Instrumentation specialist
- Maintenance technicians (electrical, mechanical)

### > Team works through all equipment and tasks together

- Very linear progression through
  - Functional analysis
  - FMEAs
  - PM assignments
- > Work smarter by using PM Templates!



## **Work Flow for PM Improvement**





# **The PM Template Process**

#### **FMEA** for Equipment Type

| Degradation Mech. Info. |   | PM2 | PM3 |
|-------------------------|---|-----|-----|
|                         | x |     | _X  |
|                         |   | x   | _x  |
|                         | x | x   | _x  |
|                         | x |     | _x  |
|                         |   |     |     |



#### **PM Template for Equipment Type**

| PM Tas | k CHS | CLS | CHM | CLM | MHS |  |
|--------|-------|-----|-----|-----|-----|--|
| PM1    | 1Y    | 2Y  | 2Y  | 4Y  | NR  |  |
| PM2    | 1M    | 3M  | 1M  | 3M  | 1Y  |  |
| PM3    | 5Y    | 5Y  | 5Y  | 5Y  | NR  |  |
|        |       |     |     |     |     |  |

PM tasks and intervals from the relevant operating context in the Template are applied to the correct subset of equipment items







## Work Flow for PM Improvement Project

#### Task (and prerequisite)

- 1. Equipment list
- 2. Equipment Types and engineering characteristics (1)
- 3. Operating Context criticality, duty, service conds. (1)
- 4. PM Groups of equipment ID's (1, 2, 3)
- 5. FMEAs and scope of each PM (2)
- 6. PM Templates (5)
- 7. Assign PMs to equipment in PM Groups (4, 6)



## **Work Flow for PM Improvement**





## **Divide Team and Work Tasks in Parallel**

- Review of FMEA and PM Template library (tech. specialists and maintenance)
- > Operating Context (operator and process engineer)
- Equipment list (tech. specialists and maintenance)
- > Equipment types (tech. specialists and maintenance)
- PM Groups (contractor)
- FMEAs and scope of each PM (contractor)
- PM Assignments (contractor)



## **Work Flow for PM Improvement**





## Use a Library of PM and Equipment Experience

- You may be special (!) but you are not different
- Most FMEA's and PM Templates can be obtained elsewhere and some pre-worked
  - Use established database from contractor
  - Will need to add some new equipment types
  - May need to review or update library of equipment types
- Keep at high level but insist on pedigree content
  - Does not need OEM and Model granularity
  - FMEA's must drive to level of cause that identifies failure pattern and time scale
  - FMEA's must map PM strategies to individual degradation mechanisms
  - FMEA's must contain effects of service stressors.



## **Assignment of Operating Context**

- Do not waste time with an elaborate functional analysis
  - Plants with well trained operators and expert process or system engineers can assign functional importance directly at equipment level
    - Use only facilitator, operator, and process engineer to work through the equipment list
    - At most, maintenance reviews the results off-line
    - Make notes on redundancy, duty cycle, service stressors, and seasonal variations, etc. as you go – use a simple scheme to speed progress, e.g. "1 of 2, alternated, not needed in winter, ~20% prod loss, adequate HC drain; C(B)."
  - Management may need categorization of consequences
    - Usually faster to do off-line from notes
  - Work in table mode to be most efficient



## Keys to Speed and Consistency

- Use a library of FMEA and PM Template information
- Divide team to use specialized expertise for specific tasks
  - Work tasks in parallel
- Use a fast method for functional analysis (criticality)
  - Capture duty cycle and service condition info. at same time
- Organize equipment types to apply PM Template methodology to groups of equipment IDs
- > Maximize use of databases and spreadsheets
- Result can be a reduction in use of your personnel time by a factor of ten or more



## **FMEA** and **Template** Libraries

- ➤ The Electric Power Research Institute (EPRI) has worked for 13 years to prepare a database of such information
  - Pedigree is from the foremost equipment experts in the industry
  - ❖ Is used by fossil and nuclear power plants (e.g. 84% of nuclear plants use it) and power transmission and distribution
  - Has been used successfully for O&G applications
  - ❖ Has ~250 equipment types for balance-of-plant infrastructure equipment, e.g. pumps, compressors, turbines, heat exchangers, valves, motors, switchgear, instrumentation, dryers, fans, transformers, batteries, cables, etc.
  - Available at a cost that is only a fraction of the resources you will spend to develop such information independently



#### Conclusion

- Work smart at every step in PM improvement
- > Failure to do this will most likely lead to project failure
- > Save plant personnel time by:
  - Allocating specific expertise to the right steps
  - Work tasks in parallel
  - Use a library of equipment FMEA and PM information and lessons learned to reduce work load
- > O&G could adapt the EPRI database, share PM info., and cooperatively add O&G-specific equipment
  - There is nothing particularly proprietary about PM information
  - Increasing penalties for environment, health, and safety infringements make competitive issues relatively less important

